Im dritten und letzten Teil geht es ansatzlos weiter mit Rob Watts im zweiten Teil begonnenen Ausführungen über das Noise Shaping des DAVE. Seine Diskussion mit dem Entwickler über Gegenkopplungsarten in der Ausgangsstufe hat Kollege Roland Dietl ad usum Delphini zusammengefasst: Er hat den Text nicht von Anstößigem, sondern lediglich von – zumindest für mich – technisch allzu Kompliziertem befreit.
Rob Watts: Beim HUGO kam ich bei der Verbesserung des Noise Shapings nur zu einem bestimmten Punkt aufgrund der Tatsache, dass da nur ein Vier-Element-Pulse-Array-Wandler zum Einsatz kommt, und weil die Zahl der Gates auf dem FPGA beschränkt ist. Diese Beschränkungen habe ich beim DAVE nicht. Daher habe ich angefangen, die Noise Shaper noch einmal neu zu gestalten und das Thema Tiefe der Abbildung zu untersuchen. Ich startete mit dem Standard vom HUGO, also 200 Dezibel. Ich verbesserte das Noise Shaping um 20 Dezibel, die Bühne wirkte tiefer, ich erhöhte noch einmal im 20 Dezibel, die Tiefe nahm weiter zu. Ich erreichte 60 Dezibel und die Tiefenabbildung wurde noch besser. Über einen Zeitraum von 90 Tagen änderte ich die Struktur des Noise Shapers radikal. Schließlich war es möglich, Signale von minus 350 Dezibel zu reproduzieren. Daher musste ich Testsignale von 48 Bit kreieren, um den Noise Shaper damit zu füttern. Wie sich herausstellte, ja wie sich merkwürdigerweise herausstellte, reagiert das Gehirn unglaublich empfindlich auf extrem kleine Fehler bei der Detailauflösung, Fehler die man für vernachlässigbar halten würde. Aber das Gehirn erkennt sie, und zwar durch die Unfähigkeit, den Instrumente einen exakten Platz auf der Bühne zuweisen zu können. Auch heute finde ich es noch abenteuerlich, wie empfindlich das Gehirn reagiert. Es scheint kein Limit für diese Empfindlichkeit zu geben. Die Genauigkeit der Auflösung muss geradezu perfekt sein, um die Raumtiefe richtig wahrzunehmen.
Schließlich landete ich bei einem Noise Shaping 17. Ordnung. Es gibt 46 Integratoren innerhalb des Noise Shapers. Um dieses Leistungsniveau zu erreichen, musste ich alles bisherige über Bord werfen und eine komplett neue Struktur für Noise Shaper entwickeln. Das hat bisher niemand auf einem so komplexen Level getan. Der komplexeste Noise Shaper, den ich zuvor gesehen hatte, war einer 9. Ordnung für DSD. Ein Noise Shaper 17. Ordnung ist schlicht aberwitzig. Das war eine wirklich spannende Zeit, weil ich jeden Tag eine Verbesserung machte, dann dachte ich darüber nach, wie ich es noch besser machen könnte, dann setze ich es um und probierte es aus. Zu dieser Zeit war ich aber auch etwas beunruhigt, ob die Tatsache, dass der Noise Shaper eine Auflösung von 350 Dezibel hatte, der Grund für die Verbesserung war oder nur ein Symptom für etwas anderes, das vor sich ging. Vielleicht brache die Leistungsfähigkeit des Noise Shapers ja irgendetwas in einem ganz anderen Bereich durcheinander, was zufällig dadurch kompensiert wurde. Vielleicht braucht man gar nicht dieses Niveau an Leistung, und es passierte in Wirklichkeit etwas anderes. Aber ich benutze digitale Noise Shaper im DAVE und vor ein paar Monaten musste ich sie neu gestalten, um die 350 Dezibel zu erreichen. Und ich bekam dieselben Ergebnisse. Man braucht im digitalen Pfad wirklich die 350 Dezibel Auflösung oder 48 Bit Genauigkeit. Das scheint kein Symptom für etwas anderes zu sein. Das Gehirn scheint wirklich so sensibel zu sein. Das treibt einen schon um, dass das Gehirn so empfindlich reagiert. Aber das hat natürlich auch Spaß gemacht.
Aber im Hinterkopf dachte ich noch immer über das Problem mit WTA-Filter nach und dachte auch über die Sache mit HUGO nach, dass ich nicht verstand, warum er die magischen Fähigkeiten hatte, die er nun einmal besaß. Eine Sache, die ich bei all meinen Wandlern gemacht habe, ist, dass die Noise Shaper mit 2048-facher Abtastrate arbeiten. Sie laufen also mit 104 Megahertz und ich filtere 104 Megahertz, so dass das Digital-Signal sehr sauber ist. Da ist so wenig Rauschen vorhanden wie möglich. Ich habe Euch ja die Bilder gezeigt: Auf digitaler Ebene ist der Sinus schön glatt. Das wird bei allen Rauschproblemen so gemacht, auch bei der Modulation des Grundrauschens. Das macht den Klang viel geschmeidiger und dunkler. Ich mache das aus guten Grund, denn sowohl Simulationen als auch Hörtests beweisen, das es wirkt.
Aber dann bemerkte ich, dass ich durch die Verbesserung der Filterung bei 2048, die ich beim HUGO mache, auch das zeitliche Auflösungsvermögen verbesserte. Das brachte mich dazu anzunehmen, dass vielleicht das Zeitverhalten bei 16fs nicht das Problem sei, denn da filtere ich üblicherweise, mit einem WTA-Filter bei 16fs. Ich überlegte, ob ich die Frequenz nicht erhöhen müsste. Beim Hugo gibt in der ersten Stufe ein achtfaches Oversampling und dann geht es einer zweiten Stufe auf 16-faches Oversampling. Die WTA-Filterung ist also 16fs. Dann experimentierte ich mit 16-fachem Oversampling in der ersten Stufe. Ich ersetze also den Acht-mal-eins- durch ein 16-faches einstufiges WTA-Filter und es klang deutlich besser. Es war ein großer Unterschied in der Klangqualität, viel größer als der zwischen Filtern mit 26000 und 164000 Taps. Das brachte mich zu dem Schluss: Das Problem ist, dass ich die Genauigkeit des Zeitverhaltens unterschätzte, die im Wandler beim FIR-Filter nötig ist. 16-faches Oversampling entspricht einer Genauigkeit von einigen Mikrosekunden, aber die Genauigkeit sollte bei viel kleineren Werten liegen. Als ich beim HUGO die neuen Filter verwendete, verbesserte ich die Genauigkeit auf Nanosekunden. Ich hatte also 16-faches Oversampling in der ersten Stufe ausprobiert und dann ging ich in der zweiten Stufe von 16-fachen auf 256-fache WTA-Filterung. Die FIR-Filter laufen nun mit 256-facher Frequenz. Niemand ist bisher auf dieses Level vorgestoßen. Wie ich gesehen habe, ist das höchste, das bisher jemand gemacht hat, 16-fach. Eine 256fs-Filterung benötigt eine beträchtliche Rechenleistung, man braucht eine Menge DSP-Cores, damit es funktioniert. Aber es macht einen großen Unterschied.
Roland Dietl: Es überrascht mich, dass Noise Shaper einen so großen Einfluss auf den Klang haben.
Rob Watts: Niemand hört sich Noise Shaper an. Aber ich habe mir meine Noise Shaper immer angehört, weil ich weiß, dass die einen großen Einfluss auf den Klang haben. Aber ich habe die Grenzen für die Leistung von Noise Shapern nie so weit verschoben, weil die Kapazität der FPGAs das nicht erlaubte. Aber ich habe die Noise Shaper immer gehört. In der Tat konnte ich eine der Firmen, mit denen ich zusammenarbeitete, dazu bringen zuzustimmen, dass dies aus klanglichen Gründen auf diese besondere Art gemacht werden müsse. Ich habe ihnen so viele Argumente zu dieser Sache geliefert, aber sie haben mir nicht geglaubt. Also machte ich einen Noise Shaper mit einer Leistung von 190 Dezibel und einen anderen mit 200 Dezibel. Eigentlich sind 190 Dezibel ja ausreichend. Dann brachte ich einen Ingenieur, der kein Audiophiler war, dazu, sich die beiden anzuhören. Am Ende des Hörtests sagte er: „Was mich überrascht hat, war nicht die Tatsache, dass ich einen Unterschied hören konnte, sondern wie leicht ich diesen Unterschied hören konnte.“ Ein Noise Shaper, der nach ihrer Meinung perfekt war und im ingenieurwissenschaftlichen Sinne perfekt ist, wurde leicht von einem Noise Shaper übertroffen, der noch perfekter ist. Er schrieb einen Bericht für die Firma und danach hatte ich kein Problem mehr, Dinge aus Gründen der Klangqualität zu tun. Das Experiment machte sich also bezahlt. Noise Shaper machen wirklichen einen großen Unterschied im Klang. Und wie man die Noise Shaper konzipiert, macht einen großen Unterschied. Ich merkte nicht, welchen großen Unterschied sie bei der Wahrnehmung von Tiefe machten. Das ist wirklich eine sehr, sehr große Veränderung. Ich denke, ich habe in den letzten beiden Jahren mehr gelernt, als in den zehn Jahren zuvor. Die Arbeit am WTA-Filter, die Arbeit am Noise Shaping war eine spannende Zeit in den letzten Jahren.
Dirk Sommer: Haben Sie nach den neuen Erkenntnissen noch Änderungen am HUGO vorgenommen?
Rob Watts: Nein, ich habe mit der Entwicklung des HUGO aufgehört, sein FPGA ist für die neuen Entwicklungen zu klein. Ich kann keine Verbesserungen vornehmen, wenn wir keinen leistungsfähigeren FPGA verwenden. Auch wenn ich einen besseren FPGA hätte, wäre das Ergebnis sehr nahe an dem, wie es heute ist. Da haben wir das Optimum für die Größe, für diese Art von Geräte erreicht. Das Schöne daran herauszufinden, was das Geheimnis von HUGO ist, war, dass es half, als die Verbesserungen der analogen Ausgangsstufe und die Verbesserung des Noise Shapers den DAVE sehr, sehr vollmundig und angenehm klingen ließen, ja fast schon zu vollmundig und zu angenehm. Das Schöne an HUGO ist seine Direktheit, man erkennt den Anfang und das Ende von Noten sehr leicht, und das hat einen gewissen Reiz. Ich fand dann heraus, wo bei DAVE das Problem lag und verbesserte, wie gesagt, die WTA-Filter und einige andere Dinge. Dadurch klang DAVE ein gutes Stück schneller, straffer und dynamischer. Er ist nun auch neutraler, sehr viel transparenter und gleichzeitig vollmundig und angenehm. Und natürlich wird man mit Leichtigkeit die Veränderungen bei der räumlichen Abbildung wahrnehmen. Es ist schön, dass es so ausging. Denn ich versuche nicht, einen bestimmten Sound zu kreieren, ich versuche vielmehr, den Wandler so transparent wie möglich zu machen. Niemand hat bisher einen absolut transparenten DAC gehört. Aber wenn der DAVE in meiner Anlage besser klingt, bin ich glücklicher. So ist es letztlich gut ausgegangen.
Zum Analogteil: Alle bisher beschriebenen Maßnahmen wären nutzlos, wenn die analoge Ausgangsstufe schlecht wäre. Das Problem, das ich bei HUGO hatte, war dass der Klang sich minimal verhärtete, wenn man sehr niederohmige Kopfhörer anschloss. Das war keine große Veränderung, aber man konnte es hören. Wenn man es gemessen hat, konnte man erkennen, dass Verzerrungen höherer Ordnung zunahmen. Ich erkannte, was das Problem und die Lösung dafür war, nämlich eine andere Struktur für die Ausgangsstufe zu wählen. Ein analoger Verstärker ist eigentlich ein Noise Shaper erster Ordnung. Ich dachte also, dass ich das Problem hochfrequenter Verzerrungen durch eine Lösung zweiter Ordnung in den Griff bekomme. Eine analoge Ausgangsstufe erster Ordnung in einen anlogen Noise Shaper zweiter Ordnung zu verwandeln, ist für mich leicht, weil ich die Mathematik dahinter verstehe. Das ist etwas, das in den 80-ern entwickelt wurde, aber nie Popularität erlangte. R. R. Cordell beschrieb „Nested Feedback Loops“, eine Schaltung die sich nie durchsetzte, weil sie Probleme mit der Stabilität hatte. Er konnte die Probleme nicht lösen, weil er die Schaltung als Verstärker ansah. Für mich ist die Stabilität von Noise Shapern keine Schwierigkeit. Man weiß, wie man Stabilitätsprobleme bei Noise Shapern löst, weil jeder Noise Shaper, den man entwirft, erst einmal instabil ist. Daher kennt man Wege, ihn stabil zu machen. Wenn ich die Schaltung nicht als Nested Feedback Look, sondern als Noise Shaper 2. Ordnung betrachtete, konnte ich die Stabilitätsprobleme recht einfach lösen. Ich behandelte die Schaltung wie einen normalen Noise Shaper. Ich veränderte den Verstärker zu einem Noise Shaper, und das löste das Verzerrungsproblem vollständig. Wenn man nun eine Last von 32 Ohm anschließt, gibt es keine Änderungen bei den Verzerrungen, abgesehen davon, dass allein die Verzerrungen 2. Ordnung ganz leicht nach oben gehen. Aber es gibt keine Veränderungen bei der Klangqualität und noch entscheidender: Die hochfrequenten Verzerrungen ändern sich nicht. Obwohl es diesen analogen Noise Shaper 2. Ordnung als Ausgangsstufe gibt, existiert nur ein einziger Über-Alles-Gegenkopplungspfad. Der analoge Bereich ist sehr einfach gehalten. Da sind praktisch nur zwei Widerstände und zwei Polypropylen-Kondensatoren im Signalweg diese Gegenkopplungspfads. Der analoge Bereich ist, wie gesagt, sehr simpel. Weil die Filterung auf digitaler Ebene stattfindet und die Noise Shaper mit so hoher Frequenz arbeiten, kann die analoge Filterung minimal ausfallen. Wir brauchen keine aggressive analoge Filterung.
Roland Dietl: Sie sagten, es gebe eine einzelne Über-Alles-Gegenkopplungsschleife. Vorher war von einem Nested Feedback Loop die Rede.
Rob Watts: Ja, mit dieser Technik bekommen wir eine kleine Gegenkopplungsschleife innerhalb der großen Gegenkopplungsschleife. Die globale Gegenkopplungsschleife, die die Verstärkung festlegt, ist außerhalb und der Nested Feedback Loop liegt innerhalb der globalen Gegenkopplungsschleife. Das Hauptproblem bei einem Verstärker sind bekanntlich die Verzerrungen in der Ausgangsstufe. Mit dem Nested Feedback Loop wird eine lokale Gegenkopplung der Ausgangsstufe erreicht. Damit werden die Verzerrungen der Ausgangsstufe reduziert, bevor die globale Gegenkopplung eingreift. Die Ausgangsstufe verhält sich wie eine ideale Ausgangsstufe ohne Verzerrungen.
Zu den Messwerten: Das Störgeräusch bei 5 Volt liegt A-bewertet bei -124 Dezibel, bei 2,5 Volt, der übliche Ausgangsspannung für einen Wandler, sind es dann -127 Dezibel. Der Dynamikumfang liegt ebenfalls bei 127 Dezibel. Es macht keinen messbaren Unterschied bei der Störspannung, ob man nun keine oder eine sehr geringe Ausgangsspannung oder 2,5 Volt hat. Und das ist total außergewöhnlich. Bisher hat niemand einen DAC vorgestellt, bei dem es zwischen 2,5 Volt und -60 Dezibel keine messbaren Veränderungen bei der Störspannung gibt. Die Verzerrungen liegen bei 0,000015 Prozent. Und auch das ist ganz außergewöhnlich niedrig. Es gibt keine messbare Modulation des Grundrauschens und auch keine nicht harmonischen Verzerrungen. Auch das hat es bei einem Wandler bisher noch nie gegeben. Das trifft auf alle meine Wandler von MOJO zu DAVE zu: Sie haben eine analoge Verzerrungscharakteristik. Wenn das Signal kleiner wird, nehmen auch die Verzerrungen ab. Wenn man ein sehr kleines Signal hat, verschwinden die Verzerrungen vollständig. Unterhalb von -30 Dezibel gibt es überhaupt keine messbaren Verzerrungen irgendwelcher Art. Das erreicht man nicht mit Ladder-DACs. Auch Wandler mit Widerstandsleitern generieren mehr Verzerrungen, wenn das Signal kleiner wird, und das erreicht man auch nicht bei DSD, weil hier eine Menge mehr Verzerrung entstehen, wenn das Signal kleiner wird. Auch bei Wandlern, die mit Chip-Sets arbeiten, nehmen die Verzerrung zu, wenn das Signal kleiner wird. Das ist ein sehr wichtiges Merkmal, das die Klangqualität verändert.
Hier ist Ausdruck von einem Audio Precision APx555, der im November 2014 herauskam, das neueste Test-Equipment und das einzige auf diesem Planeten, dass die Leistungsfähigkeit des DAVE wirklich messen kann. Jetzt komme ich schon sehr nahe an die Grenzen des Audio Precision. Man kann sehen, dass die Harmonischen der Verzerrungen unterhalb von 150 Dezibel sind. Das Grundrauschen liegt bei -180 Dezibel, und was absolut entscheidend ist, ist die rote Linie, die das Verhalten ohne Signal zeigt. Man hat genau dasselbe Grundrauschen ohne irgendein Signal und bei einer Ausgangsspannung von 2,5 Volt. Niemand hat es bisher geschafft, einen Wandler auf diesem Niveau zu bauen, ohne messbare Modulation des Grundrauschen (noise floor modulation) bei 180 Dezibel. Das ist völlig einzigartig. Das ist auch einer Gründe dafür, dass der DAVE so angenehm und präzise klingt. Das führte zwischenzeitlich dazu, dass ich an einem Punkt der Entwicklung dachte, der DAVE klingt zu vollmundig und zu dunkel. Die Modulation des Grundrauschens lässt Dinge heller und härter klingen. Die Beseitigung der Modulation des Grundrauschens lässt den DAVE so außergewöhnlich klingen. Er ist wie gesagt, der einzige D/A-Wandler, bei dem keine Modulation des Grundrauschens vorkommt. Der DAVE besitzt mit Sicherheit die fortschrittlichste Wandler-Technologie der Welt, er definiert die mit einem Wandler erreichbaren Messwerte neu und setzt für mich neu Massstäbe bei Musikalität und Klangqualität – was wir hoffentlich auch gleich hören werden.